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Tewksbury Lecture: Putting fracture to work 
B. A. B I L B Y  
Department of the Theory of Materials, University of Sheffield, Sheffield, UK 

It is emphasized that the science and crafts associated with the parting of solids are of 
considerable industrial, cultural and historical interest. Some principles of the modern 
theory of fracture which may be relevant to the controlled separation of a solid into 
pieces are reviewed. The use of path independent integrals in the analysis of indentation 
fracture is discussed, and some of the subtleties involved in treating the motion, deviation 
and forking of cracks and the energy balance in crushing and shattering are considered. 
The paper concludes with a brief account of some recent work on the theory of flint 
knapping and of the influence of the environment on the fracture process. 

1. Introduction 
It is only common prudence to consider the 
possible failure of anything built or constructed, 
so that when fracture is mentioned perhaps the 
first thought that springs to mind is how it may 
be prevented. Concern for safety and the protec- 
tion of the environment have caused this aspect 
of the subject to grow in importance with the 
scale of engineering structures and the increasingly 
awesome consequences of their failure, particularly 
in the fields of nuclear power and the transport 
and production of chemicals and fuels. In this 
Fourth Tewksbury Symposium we look at the 
other side of the coin and consider the parting of 
solids as a useful art. Today this activity is the 
basis of great industries concerned with blasting, 
mining, tunnelling, quarrying and the drilling of 
rocks; with the machining, grinding and cutting 
of all materials; with some forms of dredging and 
metal working; with comminution, an essential 
starting point for many processes, including the 
winning of most metals, the burning of solid fuels, 
and the preparation of components from powders; 
and, regrettably, with many aspects of the hideous 
arts of war. We depend upon it for our paints, 
cosmetics and doctors' pills, as the pestle of  the 
apothecary reminds us. From the parting of solids 
stem the arts of the sculptor and carver; the crafts 
~f the mason and worker of gems. Among its tools 
are the razor, the scissors and the scalpel. We all 

know it, as master or servant, in the cutting of 
glass and tiles and the working of wood, and in 
many other homely tasks about the kitchen and 
garden. It influences the texture of our baking, 
and in common with those many animals which 
rely on beak, tooth, pincer or claw, enables us to 
win and eat our food. The ability to break or tear 
things is indeed a much older concern of mankind 
than keeping aircraft flying, or ensuring the safety 
of  nuclear reactors or structures in the North Sea. 
Flint knapping and the development of sharp 
tools and weapons are elements in the very history 
of man, and the products of the mill and grindstone 
were his earliest manufactures. 

These things have shaped our thought and 
speech. "Eyeless in Gaza, at the mill with slaves", 
our life is "one dem'd horrid grind". But "set 
your faces like a flint"; "in time small wedges 
cleave the hardest oak, in time the flint is pierced 
with softest shower". Though, "unkindest cut", 
"more water glideth by the mill than wot's the 
miller of",  still "Gottesmtthlen mahlen langsam, 
mahlen aber trefflich klein". 

Breaking things and preventing their failure 
thus account for considerable human endeavour. 
The student of fracture is fortunate in having a 
subject of such widespread interest and import- 
ance. Not only are its principles relevant to such 
extremes as the earthquake and the microtome, 
but its understanding must embrace, besides the 
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fracture itself, all the processes determining the  
deformation and strength of the material before 
and during this event, and the influence of the 
environment upon them. 

To so broad a canvas we can add here only a 
fine detail or some general perspective. The 
symposium is to include lectures by experts in a 
number of fields we have mentioned. Accordingly 
we shall attempt in this introductory lecture only 
to discuss a few general principles which may be 
relevant to them. We begin with a brief recapitu- 
lation of some of the salient ideas in the current 
theory of fracture. 

A solid may be separated into parts by three 
processes. Rows of atoms or molecules may be 
pulled apart normal to their centres of mass 
(cracking); these rows may slide over one another 
until they part company (sliding off); individual 
atoms may be removed as in vacancy migration or 
electrochemical attack. For any of these processes 
to occur, two conditions must be satisfied. First, 
the total energy of the body and loading system 
(if such a division is convenient) must fall as the 
fracture proceeds. Secondly, the physical mech- 
anism causing the fracture must be able to operate 
- for example, a sufficient stress to cause separ- 
ation or sliding must be present, or the temperature 
must be high enough for individual atoms to jump. 

Although it is strictly necessary always to take 
account of  thermal motion on an atomic scale and 
to make a kinetic model of cracking and sliding off 
[ 1 - 5 ] ,  even at ordinary temperatures, it is some- 
times a convenient idealization to ignore the 
thermal motion and to work with purely mechani- 
cal (though possibly rate dependent) theories. The 
realization that most engineering materials either 
contain small crack-like defects or readily develop 
them in service has caused considerable emphasis to 
be placed recently on the understanding and control 
of  the propagation of cracks. Their initiation and 
behaviour on an atomic scale is nevertheless still a 
very important concern in the fundamental study 
of fracture processes, particularly those due to 
creep, fatigue and electrochemical attack. Study 
of  the microscopic processes also plays an import- 
ant part in the development of materials of greater 
toughness [6 -8 ] .  Indeed, these aspects of the 
subject currently need perhaps more emphasis 
than engineering fracture mechanics, for our 
knowledge of them is less complete. The principles 
of fracture mechanics however are universal, equally 
applicable to macroscopic cracks in engineering 
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structures and to defects on an atomic scale. Thus 
the large development of the subject on the. 
engineering side is at the same time reacting with 
advantage on studies of  the micro-processes' 
involved. 

Another useful idealization in considering crack 
propagation is to distinguish fractures where the 
material remains essentially elastic except in' 
regions near the crack tip whose linear dimensions 
are small compared with the crack length, and 
those where it does not. When the non-elastic 
region is confined to the neighbourhood of the 
crack tip in thissense we can decouple the energy 
available to drive the crack and that required to 
produce fracture, even though the latter may be 
much greater than the ideal fracture energy for 
the brittle separation of atomic planes [10]. 
Griffith [11, 12] was the first to recognize the 
principles governing crack propagation in this 
situation, but we now usually formulate them in 
terms of the energy release rate or crack extension 
force [9] G and write the necessary condition for 
crack advance as 

G = R (1) 

where R is the fracture energy. 
The classical situation in which the crack 

stability can be analysed in this way is the ideally 
brittle cleavage of a linear elastic material. Then 
R = 27 where 7 is the surface energy. The singular 
stresses p# near the crack tip are given by 

pi~ = (27rr) - l /2KsLij (0)  (2) 

where r is the distance from the crack tip, and 
KI, K2, K 3 are the stress intensity factors for 
the loading modes I, II and III respectively. For 
mode I loading, 

1 - - v  
a - K ?  (3) 

2/1 

where u is Poisson's ratio and/1 the shear modulus. 
A much wider class of fractures canbe discussed 

in this same general framework by including in R 
the energy absorbed by all the non-linear processes 
which contribute directly to the tearing apart which 
occurs when the new surfaces are formed [9, 10]. 
This was shown to great effect by Cottrell in 
the First Tewksbury Lecture [13], by using 
the DBCS model [14-20]  to provide a theory of 
the fracture energy R = o 1 ~  c depending on two 
parameters: ~1, the strength of the layer ahead of 
the crack and ~e, the critical crack tip displace- 



ment. The DBCS model has been very widely 
applied and developed, as discussed in recent 
reviews [ 5 , 2 1 -  24]. The theory gives the fracture 
stress of as [13, 17] 

af/al = (2/rr) cos -1 {exp (-- c*lr/c)} (4) 

where c* = M(~c/4aa and M is an elastic modulus 
(= p ( 1 -  u) for plane strain, /a(1 + v) for plane 
stress and p for anti-plane strain). The condition 
c = c* defines the crack length at which the 
material becomes notch sensitive [13]. When 
c >> c*, Equation 4 reduces to the Griffith con- 
dition and we have a dangerous "low-stress" 
failure of the cumulative [25] or localized [21] 
type with of ~ e l .  For c <c* ,  crf approaches a l ,  
the strength of the layer ahead of the crack and 
the material is not notch sensitive. Catastrophic 
failures of the Griffith type can however occur 
a, hatever the absolute value of R. Looked at in 
this way, ideal brittle fracture, discontinuous 
ductile-cleavage, mode I plane-stress necking, 
mode III ductile tearing and the forty-five degree 
shear mode in steel plates involving sliding off and 
plastic expansion of holes in the shear zone, are 
all mechanically similar, differing only in their 
scale [13, 26]. The fully ductile fast fracture of a 
large structure may thus be macroscopically 
brittle but microscopically ductile. When the 
material is not in a notch brittle condition, we 
have to consider in detail the spread of the 
fracture through plastic material and the simple 
decoupling of G and R to obtain the energy 
balance implicit in the Griffith analysis can no 
longer be applied [27]. In fact, continuum theory 
tells us that, if the flow stress is bounded at large 
strains, all the energy released by continuous 
crack advance is absorbed in plastic work [21, 23, 
27-33] .  We shall not dwell on the further compli- 
cations arising in the characterization of fracture 
in the presence of considerable plastic flow [5, 27, 
32-35] .  This topic is still a subject of current 
research and there is as yet no generally agreed 
procedure for dealing with it [5, 32]. 

Fracture under these conditions is nevertheless 
particularly relevant to one of our important 
themes here - the machining of ductile materials. 
In this there are the added complications of very 
large deformations and heat flows so that variations 
of properties with strain, strain rate and temper- 
ature are important. We shall not attempt to 
discuss this topic at any length. One point is 
perhaps of interest however, because it illustrates 

how common threads may link very different 
phenomena. Many aspects of metal machining 
have been analysed with success by treating 
the work material as a continuum undergoing 
plastic deformation. Important effects caused by 
the behaviour of inhomogeneities in it are, 
however, well known [36]. These inhomogeneities 
may be natural or accidental second phases or 
particles produced by deliberate additions as in 
free-cutting materials [37]. On the primary shear 
plane these particles, through deformation and 
alignment, or both, promote fracture and insta- 
bilities leading to segmental or discontinuous chip 
formation [38, 39] by the creation of microcracks 
or voids. In the secondary shear zone near the 
rake face of the tool the particles may under go 
extreme deformation. The situation is very com- 
plicated and the behaviour is specific to the 
materials and conditions, but it is clear that the 
inhomogeneities can exert a profound influence 
on the machining operation. It is thus interesting 
to note that the development of anisotropic 
structures by deformation makes possible another, 
rather spectacular, example of a controlled fracture 
used by a craftsman, namely, the cleavage of slate. 
It is fitting, in this year of 1979 when the Uni- 
versity of Sheffield celebrates the centenary of 
Firth College, to recall that the slaty cleavage of 
rocks was for a time of considerable interest to 
Sorby, one of the most distinguished fathers of the 
University. He argued that it was due to the align- 
ment of particles or the anisotropy of structure 
caused by prior deformation of the rock [40-42].  
He showed that this deformation had occurred 
in various rocks by many careful observations 
(of contorted beds, "green spots" in slate, oolites 
and encrinite joints in limestone). Moreover, he 
demonstrated his views by dispersing flakes of 
iron oxide in pipe clay, subjecting the clay to 
compression and baking it. He then made polished 
sections to show that the flakes were aligned 
as anticipated, and was also able to cleave his 
specimen into thin flat pieces on the expected 
cleavage plane. 

The plastic deformation and rotation of 
embedded inhomogeneities of general shape must 
be treated by numerical methods. However, for 
viscous materials, the problem of the finite defor- 
mation of an ellipsoidal inhomogeneity of differing 
viscosity can be reduced to manageable proportions 
by using the analogy with elasticity [43-47].  The 
viscous problem is important in the theory of 
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suspensions, the manufacture of glass and the 
measurement of strain in rocks. Structural ani- 
sotropy, whether engendered by deformation 
or not, may also be used to make things more 
resistant to fracture; examples are to be seen in 
the products wrought by the blacksmith and the 
forger, and in the science of composite materials. 

Before closing these introductory remarks we 
note that Equation 1 relating the stress intensity 
factor KI and the crack extension force, G, first 
established by Irwin [48], means that when 
non-elastic processes near the crack tip occur 
within a K-dominated field a criterion for crack 
advance may be based either on G or K. When 
it can be used however, K has a commanding 
advantage because Ks from different loadings 
can be added; that is, K offers a linear character- 
ization. Fracture mechanics proceeds in the first 
place by ignoring all details of the processes associ- 
ated with crack advance, assuming only that the 
near-tip field can be characterized by K and that 
this field will determine all these processes, other 
conditions being equal. The safety of a structure is 
thus assured if the K values for all cracks in it are 
less than the critical K value for crack advance in 
the material, determined under similar conditions 
and with suitable precautions in laboratory tests. 
The critical K value, Krc for plane strain tensile 
loading normal to the crack, is called the (plane 
strain) fracture toughness, from the physical point 
of view it can be regarded as a way of specifying 
the fracture energy under these conditions in 
unfamiliar units (ksi in. 1/2 or MNm-3/2). This 
concept can be justified and applied successfully in 
linear elastic fracture and under conditions of 
small scale non-elastic processes. Current develop- 
ments attempt to extend it by Using one or more 
characterizing parameters differing from K, 
particularly those related to the crack opening 
displacement (COD) and to path independent 
integrals. 

2. Path independent integrals 
The formal definition of G is as follows. We let a 
crack tip advance by ~ $ and write ~E ~:rr = ~E t m +  
6E r~rr where 5E r~ is the increase in the elastic 
energy of the cracked body and SE ~rr the increase 
in the potential energy of the loading system. 
Then SE T~ = - -G$~ .  The division between body 
and loading system is somewhat arbitrary. For 
example, if we draw a surface S round the tip we 
can take the energy entering S from the surround- 
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ings as - -~E t~rr, while ~E EL is the increase in 
energy stored within S. GS~ is that available at the 
tip to drive the crack. The crack may be regarded 
as an elastic singularity or inhomogeneity or as an 
array of crack dislocations [23, 49]. It was shown 
by Eshelby in 1951 [50] that if all elastic singular- 
ities and inhomogeneities within a surface Z are 
displaced by ~ t  then ~E T~ =- -Fz6~ z where 

Ft = f PzjdSj (5) 
and d 8  

Pz.i = W6tj -- ul, tPz (6) 

Here W(ui, ui, j, Xi) is the elastic energy density of 
the elastic (displacement) field u i and Pij = OWl 
Ou~i. The result is valid for the finite deformation 
of a non-linear material if Pij is the (asymmetric) 
first Piola-Kirchhoff stress tensor, X~ the initial 
coordinates and S a surface in the undeformed 
body [51-56] .  The treatment can also be readily 
extended to generalized continua [54, 55]. The 
importance of Equation 5 is that we can show that 

~ P z j _ ( a W )  
exp (7) 

where "exp" is the explicit derivative, that is, with 
ui, ui, j and Xj, ] q: l constant. Thus the integral is 
independent of the surface S if the material is 
homogeneous. As discussed in recent reviews 
[5, 21, 24], with l = 1 and dSj = njds for ] = 1, 2 
we get for the crack extension force [23, 57-59]  

G = F1 = I r  (W~lj--P~'iui'l)nids (8) 

F1 is path-independent if (OW/~X1)exp = 0; that 
is, if the material is homogeneous in the direction 
of crack extension. Thus, for example, it can be 
applied to a crack along an interface between 
dissimilar materials [54], enabling us to define the 
crack extension force without having to handle the 
the peculiar singularities which appear at the tips 
of cracks of this kind. The integral in Equation 8 
may be transformed into several forms, some of 
which are valid also for finite deformation [50, 52, 
60]. The integral J of Rice [57, 58] has the same 
form as Fx but W is replaced by IV', the density of 
stress-working. J and F1 are identical if If '  is inde- 
pendent of the strain-path or appears so in the 
actual deformation so that we cannot tell that an 
energy density function does not exist [5, 52, 62, 
63 ]. If  plastic flow has occurred at the crack tip and 
S lies outside the plastic region, F1 (or  f )  gives the 
force on the crack tip plus the force on all dislo- 



cations inside S [50]. Fa is not defined for paths 
within the plastic region but an integral 

Qt = Q (W6tj--PiflS~u)dSj (9) 

where ~ is the elastic distortion tensor giving the 
spatial increment of elastic displacement duf  = 
d x l ~  in a continuous distribution of dislocations 
[64-66] ,  may be evaluated there and gives the 
resultant force on all dislocations within S [21, 67, 
68]. 

F~ is a path-independent integral giving the 
crack extension force. It is only one of a number 
of path-independent integrals associated with the 
elastic field. The general theory of such integrals is 
well known in theoretical physics and goes back to 
a famous theorem of Noether [69]. Quantities 
with vanishing divergence and so path-independent 
integrals, arise for any field when the Langrangian 
density function ( - - I f  in the elastic case) is 
invariant under the operations of a continuous 
group, and the general consequences have been 
treated in a number of papers [50, 52, 54, 55] 
Gfinther [70] first applied Noether's theorem tc 
elastostatics, finding in addition to Fz the integrals 

t "  
Lm = Js (XkPtj - -  X I P k j  + u k P l j  - -  u l p k j ) d g j  

(10) 

and 

M = fs (XiPtj -- i ulptfldSj (11) 

also given and interpreted by Budiansky and Rice 
[71 ].  f t ,  L kl and M are path-independent because 
a picture of a general elastic field remains one after 
it has been respectively translated, rotated or 
dilated. The conditions which must be imposed on 
the material and deformation to ensure path- 
independence of the various integrals can readily 
be determined from this fact [54, 57]. It has been 
shown [72] that these integrals Ft, L~t and M are 
the only ones of Noether's type and that the only 
new feature in plane deformation is that M 
becomes 

X f  tjdSi (12 ) M 
S 

a transformation which results from Gauss's 
theorem [54]. Several other infinite classes of 
path-independent integrals in two dimensions have 
however been found [54]. 

The above discussion has concerned only static 
cracks. An account of the force on a moving crack 

can be given as follows [52,73, 74]. Let S be a 
surface drawn round the crack tip and moving 
with its instantaneous velocity. The rate of increase 
of energy d(S) stored within S plus the rate vG at 
which energy flows to the tip must equal the total 
inward rate of energy flow I(S) from the surround- 
ings. 

I(S) = va  + 4(S) (13) 

As the crack moves, potential and kinetic energy is 
added to the interior of S at the leading boundary 
and subtracted from it at the trailing boundary. 
I(S) is the difference between those two rates of 
energy transport plus the rate of working on the 
material inside S by the surroundings, fsPiHqdSj. 
For a crack moving in the xl  direction 

I(S) = f s  {pijui + v(W + T)glj}dSj (-t--2-} 

where T is the kinetic energy density. If the 
dynamic field is a special one which moves rigidly 

'with the crack tip we have 

ui(xa,x2,t) = u~ x2) (15) 

In this case ui = --vOui/Oxl and d(S) = 0 so that 
we can write G as 

/ -  

G = J s  HljdSj (16) 
where 

Oui 
Hlj = (W+ r )81 j - -p i j  ~xl (17) 

The divergence aHlflOxj = 0, so that Equation 16 
is a path-independent integral for G. For a general 
dynamic field it is not possible to Fmd such an 
integral [73]. The best that can be done is to write 
the field in the form 

ui = u~ --vt, x=)+ui(xa,x2,t)  (18) 

and to try to arrange that u~ ~ u ~ near the tip. If 
SO, 

lim fs HlflSj (19) G = s-*o 

Alternatively, if we can show that 

lira [d(S)/I(S)] = 0 (20) 

as S -+ 0, then we have 

vG = lim I(S) (21) 
8--*0 

with I(S) given by Equation 14. The reader is 
referred to the original paper [73] for further 
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3. Indentation fracture 
In many processes where fracture is put to use, 
such as crushing, cutting, rock drilling, chipping 
and abrasive grinding, some tool or other body is 
forced against the object to be broken and fracture 
begins near the point of  contact. An understanding 
of  contact stresses [78] and indentation fracture is 
thus essential in thinking about these processes, as 
it is also when we consider related phenomena 
such as friction and wear which we may wish to 
control or prevent. 

The indentation process may be approximately 
two-dimensional as in cutting with a knife or 
driving a wedge, or three-dimensional as with a 
hardness test. The indenter may be a blunt punch 
or sphere, or it may be a knife or needle. It may 
move normally towards the surface or be dragged 
over it with friction [79, 80] as in scratching, 
abrasion and wear. The indenter may have the 
sharper profile, or it may not, as when a platen 
bears on an asperity. The process may be slow or 
involve high velocity impact with a projectile. The 
indenter may be a liquid jet. A selection of papers 
[81-128] testifies to the continuing interest in 
many of these problems and to the variety and 
complexity of the phenomena observed. A recent 
review [81] surveys some of these, including the 
effects of loading speed [84-88] ;  of sharp and 
blunt indenters [81, 89-92]  ; and of plastic defor- 
mation in loading and unloading and in static and 
sliding contact [85, 86, 89, 93 -105] .  

One of the classical problems is the formation 
iof the ring and cone crack in the stress field under 
a spherical (or other blunt) indenter [84, 86, 88, 
107-128] .  Despite much work there is still debate 
about the fundamental understanding of the 
interesting phenomena involved. Even when the 
loading is idealized to a point force and a well- 
formed cone crack considered in a linear elastic 
material, only approximate or numerical solutions 
for G are available [113, 128]. It is perhaps 

540 

k 
h 

discussion. It is verified there that Equation 21 
applied to the solution for a uniformly expanding 
crack in plane strain [75, 76] gives a G vanishing 
at the Rayleigh velocity. In anti-plane strain G 
vanishes at the shear velocity [77]. It should also 
be noted that H U is not the dynamic 4 x 4 energy- 
momentum tensor of the elastic field PU- The inte- 
gral of the dynamic PU gives the force on the crack 
tip plus the rate of change of "quasi-momentum" 
inside S [52]. 

Fig. 1, 

therefore of interest to note that an exact solution 
'of the analogous two-dimensional problem may be 
obtained [54] using the M integral of Equation 12. 

Consider this integral evaluated round the circuit 
indicated in a semi-int'mite body containing two 
cracks of  length a running from the origin O and 
inclined at an angle/~ (Fig. 1). There are no contri- 
butions from the portions a, c, e, g, i, k and the 
parts d and h together give 2Ga. In the limit the 
contributions from b and j also vanish and we have 

M = ( xtPudSj + 2Ga = 0 
,if +I 

To evaluate the contributions from f and l it is 
sufficient to use the solution for a symmetrically 
loaded infinite wedge of angle T with 

- -2F  cos ~b 
Prr -- ? + s i n ?  r 

The result is (there is a factor of one half missing 
from the previous expression [54] ) 
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any two points A and B of the faces of  a wedge of 
throat angle c~ loaded by F, W and W' as indicated 
in Fig. 3, and extends a notation of  Freund [129]. 
Since there is no coupling between the dashed and 
undashed loadings we can find K3 from the anti- 
plane strain part of  G, 

K3 = (2/IG3) 1/2 

Fig. 2. 

where the second term comes from the large circle 
l. 

It is not difficult [67] to extend Eshelby's 
analysis to the situation of Fig. 2, which allows us 
to discuss the general symmetrical loading of  an 
asperity or depression, including loads F ' ,  W' 
parallel to the line of  the cracks. We have 

2Ga = M [F + 2W cos (6/2), 0, F '  + 2W'; 3'] 

--  M ( F ,  O, F';  t3) 

- - ~ ( W c o s r h W s i n r h W ' ; ~ )  (23) 

where 4~7 = 26 -- 7 -- 13, 2~" = ~' --/3, and 

M(F, W, W'; a) - -t 
~ + sin a ~ - - ~ n ~  

(w')  2 
(24) 

2/a~ 

M(F, W, W'; o~) is the value of M for a path C joining 

(2a7) -1/2 F '  -- 2 W' 

(25) 

G3 increases without limit as 13-+0 or 13~7 
provided F ' #  0 or W'=/= 0 respectively. I f F '  and 
W' have the same sign, it has a minimum G3 (/3*) = 0 
at /3 + = F' / (F '  + 2W'), while if F '  and W' have 
opposite signs, it has a minimum Ga(13-) = 2F'W'/ 
ga7 at 13-=F ' / (F ' - -2W' ) .  The last result differs 
from one previously given [130, 131]. 

We can use the M integral in this way to find 
the total  sum of  the Ga's for any number of  radi- 
ating cracks each loaded at the origin [132] and 
for asymmetrical loadings, but we cannot assign a 
G to each crack unless we can take advantage of 
symmetry,  nor can we in general determine the 
separate K1 and K2 for plane strain loading [129]. 

Some other problems of  interest in indentation 
fracture have been solved by use of  the M integral 
[129].  The loading of  a surface crack by normal 
[54] forces P and tangential [129] forces Q (Fig. 
4) provides an example of  some of the compli- 
cations which may arise. The stress intensity factor 
is [1291 
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Fig. 4, 

P 

K1 : [/7(7./.4~-- 41/2 (a - ~) (26) 

This suggests that if Q = 0 (purely normal loading) 
K1 is negative. However this is not  so [61].  The 
effect of  the forces P is to cause the two faces of  

I Q 

0 

P 

Fig. 5, 

Q 

P ca 

P 

X 

542 

the crack to impinge at the origin (as we might 
guess from the negative K) and so sideways forces 
Q are generated. In a semi-infinite body, these 
forces are just sufficient to annul the crack 
extension force - that is they are such that Q = 
2P/rr. 

It is interesting to analyse this situation further, 
but care is necessary because of  the infmities at 
the origin. A point force 2P applied normally (Fig. 
5) to an uncracked semi infinite solid produces a 
simple radial distribution with Prr =- - (4Pf i r )  cos 
O/r. Evidently we may cut the body from O along 
Ox to any length a and retain the same stress field 
(and so that for a crack of  any length with K = 0) 
if we apply distributed forces on the small quarter 
circles at the origin (and at infmity). We find easily 
that the resultant forces are P and Q as indicated, 
with Q = 2PITt. Near the origin we may write the 
displacements in the P and Q directions for one o f  
the quarter planes 

~p = 8ppP q- 6pQO 
(27) 

5Q = ~opP Jr 6QO Q 

where the singular parts of  the coefficients are 

~pp~6VQ ~--(C In r) cos a, 6pv ~ 6 O p ~  
(c In r) sin a, with tan a = --2/7r. Superposition of  
the two quarter planes with Q = 2Pfir gives the 
half plane displacements with u ~ In r and v = 
constant  x (sgny)  on x = 0. 

To argue generally [61] that impingement will 
make K = 0 the best we can do is to ask that d6v/ 
da = 0 near the origin, since 6Q itself is infinite. 
With Equation 27 this gives, if we assume that the 
Q required depends on P but not a, 

d~Q d~Qp d6oo 
da - d-----~ P + ~ Q = 0 (28) 

Taking K = E 1/2 (AP + BQ), where A and B are 
constants and writing 

= 2ad  = 2 + Q 

and using the fact that 6eQ = 6Qp by the reciprocal 
theorem, we readily find that A 2 =  d6pe/da, 
B 2 -= d~oQ/da, A B  = d~pQ/da = d6op/da. Now 
BKE -u2 = A B P + B 2 Q ,  and so, if Equation 28 
holds, K = 0. We note that this argument could 
apply to other geometries. Thus the assumption of  
a zero in K of  this type, together with Equation 28, 



would enable us to deduce the K due to one loading 
from that due to another [61]. 

Expression 26 has interesting implications 
for indentation fracture [129]. For some loading 
paths in the (P, Q) plane a reduction in P may lead 
to an increase in crack extension force and so to 
cracking on unloading (the impingement at the 
origin which occurs when 2P is applied alone 
means that some re-interpretation of the forces Q 
in a given situation may be necessary). A similar 
discussion could be given using Equation 23, with 
more general geometries. The phenomenon of the 
development of cracks under indentations on 
unloading is relevant to chipping, scratching, wear 
and drilling [81]. An important part of the 
behaviour is controlled by the residual stresses 
which are developed due to plastic flow under the 
indenter [85, 86, 89, 93-106] ,  though lateral 
cracks may form without plasticity [86]. In the 
discussion based on Equation 26, the effect of the 
complicated loading under the indenter is rep- 
resented [129] in a simplified way by the forces P 
and Q. It is evident from the opposing effects of 
these forces (or from the various influences of F, 
W, F '  and W' in Equation 23) that the behaviour 
may be very sensitive to the local conditions near 
the point of application of the load. If at this point 
a crater of rather loosely bonded fragments has 
been produced, the amounts of normal and lateral 
forces generated on increasing or decreasing the 
normal load may be sensitive to the local asperities 
and depressions of the specimen and the indenting 
tool. 

The theory of cracks loaded by distributions of 
forces is obviously a starting point for the consider- 
ation of the action of wedges and knives. Here the 
introduction of forces F '  and W' parallel to the 
knife, as given in Equation 23, or in the correspond- 
ing elaboration of Equation 26 might be relevant 
to an idealized discussion of the effect of the 
sawing or dragging action used with knives. There 
seems to be little work published in this field of 
cutting with sharp knives [133], although cutting 
and shearing are relevant to comminution 
machinery [134], and pressing and impacting 
against sharp edges with shear and normal loading 
have been studied [135,136].  

4. C o m m i n u t i o n  
In comminution we reduce the size of finite bodies 
by repeatedly separating them into pieces. As with 
most large human endeavours which are long- 

established its practice is very complicated. A 
recent survey [133] lists five techniques currently 
of commercial significance - explosive shattering, 
electro-hydraulic crushing, ultra-sonics, mechanical 
means and the use of jet or fluid energy mills. It 
classifies machines commonly in use according to 
the dominant process in them - crushing, impact 
or attrition (abrasion). As with all fracture 
processes the environment influences the behaviour 
and it is sometimes necessary to take into account 
balancing processes of agglomeration which occur 
as the particles become finer [137, 138]. Import- 
ant from the practical point of view are the 
efficiency of the process [133], which can be 
assessed in several ways [139], and the size 
distribution of the particles produced. There are a 
number of theories of the comminution process, 
expressing these and other indexes in terms of 
more fundamental physical parameters describing 
the method of size reduction used and the materials 
involved [133, 140-142] .  Moreover, with the 
advent of increasing computing power, the number 
and complexity of theoretical discussions of the 
effect of the repeated recycling involved in milling 
processes have increased considerably. The state of 
the theory of these difficult questions, so import- 
ant in practice, are treated by experts elsewhere at 
this meeting and we shall not attempt to discuss 
them. 

Generally in practical processes a particle is 
crushed and the pieces re-crushed repeatedly. 
Many investigators of the fundamental parameters 
controlling the comminution process and the 
size distribution it produces have thus gravitated 
towards studies of what happens when a particle 
or specimen is crushed once - single particle 
crushing. There have been many investigations of 
this topic, using both impact and slow crushing, 
some including most elegant studies using high 
speed photography [ 136, 143-157] .  As in inden- 
tation fracture one has to consider the effect on 
the cracking process of the size, shape and proper- 
ties both of the particles and the indenters or 
platens, and the methods of applying the load, 
including particularly its speed and whether the 
relative velocity at contact is purely normal or has 
also a tangential component. In the compression of 
spheres two distinct modes of failure have been 
noted [143, 148, 151]; ring and cone cracking 
under the points of application of the load may 
lead to initial separation into pieces like the peelings 
of an onion, while greater deformation under these 
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points of contact may cause a wedging action 
which splits the specimen into segments like those 
of an orange. Depending on the conditions and the 
properties of the bodies, the separation may be a 
relatively quiet one or an explosive shattering, and 
may be into a few pieces or many. We shall later 
consider these conditions and properties more 
carefully, but we begin by examining a special 
shattering process, contrived to ensure that the 
body breaks safely into many pieces. 

5. Energy relations in crack dynamics, 
comminution and shattering 

The shattering process we discuss is that of the 
breaking of toughened glass as in the all too familiar 
example of  the car windscreen. A toughened glass 
plate has a compressive stress in its surface layers 
while its interior is in a state of balancing tension. 
Cracks do not run readily through the surface 
layer, but when they do reach the interior, cata- 
strophic failure takes place. A very rough 
calculation shows that the stored elastic energy 
is just about equal to the minimum energy required 
to fracture the plate so that, in contrast to the 
usual grinding operation, this comminution 
process appears to be rather efficient. A typical 
value [158-161] for the fracture energy R of a 
glass plate is 5 to 1 0 J m  -2 , while for the residual 
tensile stress aT in a thermally toughened plate we 
take [158] 10MNm -2. Then the stored elastic 
energy per square metre, (1--v)(a~r/E)d, of  a 
plate of thickness d is equal to the work (2R/x)d 
needed to shatter it into pieces of size x when x is 
1 to 2 cm, a result of the right order of magnitude. 
Moreover, a~x should be constant, as observed 
[159]. Of course we have neglected the elastic 
energy in the fractured pieces and the fact that the 
surfaces are in compression [159], but the con- 
clusion that most of the elastic energy is used in 
supplying the fracture energy is in accord with the 
motorist's usually fortunate experience that his 
screen shatters quietly with little energy to spare. 
The reason for the apparent efficiency of this 
comminution is that we have enlisted the aid of 
the forces arising from the permanent deformation 
combined with thermal expansion to generate the 
internal stress without saying what this process has 
cost us in thermal energy. The shattering of rocks 
by decrepitation due to thermal shock is a well- 
known and very ancient art, but when a true 
energy balance is struck, its potential for commi- 
nution seems to be doubtful [133, 162], though 
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heat is used in some methods of rock drilling [133, 
163, 164]. There is evidence of more advantage 
however when the temperature changes include 
those of phase transformations causing internal 
stress and microcracking in the material undergoing 
comminution [162]. We should thus perhaps 
always remain alert to any possibility of using 
thermal or chemical forces in comminution, since 
these are very large compared to those which we 
can apply by any conventional mechanical means. 

More detailed theories of the shattering of 
toughened glass have been constructed by esti- 
mating the critical G needed for crack forking and 
so the particle size from a mean free path for 
repeated crack division [159, 165]. Again the 
relation a~x = constant is obtained [159]. The 
motion, paths, deviations and forkings of cracks 
have been much studied [59 ,165-230] ,  especially, 
at high crack speeds, by the use of sophisticated 
photographic techniques. Fig. 6 shows a high 
speed photograph by Field [166] of the failure of  
toughened glass, in which an initial regular forking 
is clearly seen to be modified to produce the 
familiar final craze pattern by a reflected stress 
wave [188,189] returning from the bottom of the 
specimen. Fig. 7 shows some previously tmpub. 
lished pictures by Solt~sz [190] of the initial 
forking, with a picture of  the behaviour in 
untoughened glass for comparison. 

The path that a crack will follow and when it 
will turn or fork are topics of importance to the 
fundamental understanding of comminution, 
shattering processes and indentation fracture 
generally. We refer only briefly to the much 
�9 studied question of the possible criteria for the 
crack path. The subtlety here is that as a crack 
advances, turns or forks, it continually alters the 
field in which it moves. A possible criterion [61] 
is that the crack moves so that the quantity F2 
given by Equation 5 is always zero. Since we may 
show that F2 = -- 2K1K2, [ 191, 192], this criterion 
includes another possible alternative, namely that 
the motion is such that K2 = 0, [193, 194], or 
that the crack moves to maintain a symmetric field 
at its tip [59, 195]. The integral Lnl of Equation 
10 may be used to interpret F2. We can show that 
if a crack has a deviation at its tip forming a kink 
at an angle a, then f2 = [~fl/~a]a=o where f l  
and f2 are the values of  Equation 5 evaluated 
round the tip of  the kink [55]. Thus f2da is the 
change in the crack extension force caused by a 
small deviation da of the main crack; there is no 
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first order change in f l  if f2 = O. Some problems 
in the theory of crack paths, and the use of 
formulae for the stress intensity factors at forked 
and kinked cracks to discuss them, have been 
briefly considered elsewhere [5, 24, 196-199, 
268]. The analysis of the kinked crack [196] has 
also been applied [200, 201] to discuss crack 
stability [202-204].  

The energy relations at the tips of cracks which 
are moving or forking are subjects which bristle 
with subtleties [74], many of which are brought 
out clearly in recent papers by Rose [205-208].  
To discuss the motion of a crack tip we must let it 
move in an arbitrary manner, so that the tip is at 
x = ~(t), say, and calculate the energy available 
for its propagation. The calculation of this energy 
release rate G for arbitrary (rectilinear) motion 
was first carried out for anti-plane strain by Kostrov 
[209] and Eshelby [210, 211] and later extended 

to plane strain conditions by Freund [212-215].  
It turns out that G depends on ~ and ~, but not ~; 
the crack tip thus behaves as if it had no inertia 
[ 210 ,211 ,216 ,217 ] .  If the fracture energy R is 
also assumed to depend on ~ and ~, we then have 
the equation of motion [210, 211] 

G(~, ~) = R(~, {) (29) 

The expression for G may be written 

G = g(v)G* (30) 

where G* depends on the current length of crack, 
the applied load and the history of crack extension, 
but not on the instantaneous crack speed v 
[210-215] .  For plane strain g ( v )  can be approxi- 
mated for most practical purposes by the linear 
relation [205] 

g ( v )  = 1 - - v / c  R (31) 

where c R is the Rayleigh velocity. 
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The implications for crack forking of the 
Relation 30 are interesting [52,212].  If  the forking 
angle is small and R is unchanged the energy 
release rate G must roughly double to maintain 
energy conservation [52,173].  The relation shows 
that the crack may achieve this doubling of G by 
reducing its speed. If  we suppose the crack to stop 
we obtain an estimate of the lowest speed VF at 
which forking can occur. This gives v v  "~ 0.5 cR in 
plane strain or vv "~ 0.6 c2 in antiplane strain. 
However [205] if R varies with speed, VF can be 
much lower, A number of investigators have 
mearured the temperature rise at the tip of a 
moving crack, which may be very large, and have 
deduced the heat generated there [218-2241. For 
PMMA [221-223] the measured increase of R 
with crack speed has been used [225-227] to 
discuss Equation 29. In glass and other brittle 
materials there appears to be maximum crack 
speed v m to which a crack accelerates before 
forking [205], though forking does not occur at a 
constant velocity [170] and there is evidence that 
cracks continue to accelerate right up to the point 



of forking [179]. The situation is complicated and 
not completely understood [205]. It is clear that 
as the crack grows the factor G* increases and that 
the energy balance Equation 29 links variations in 
g(v) and R(~, ~). Repeated forking is favoured 
when the crack begins in an "overloaded" con- 
dition, for example, from a blunt rather than a 
sharp notch [166, 167, 179] or from a knife edge 
struck with increasing load [167]. The crack firsl 
maintains the energy balance by accelerating to 
reduce g(v) and increasing R by generating more 
dissipative processes at its tip. G* becomes larger 
for a given crack length as the initiating stress field 
becomes higher [168], so that forking to enable 
the effective R to increase begins earlier and 
subsequently occurs more frequently. One might 
perhaps expect that the forking in materials 
showing a marked increase in energy dissipation 
with crack speed would differ from that shown by 
materials which do not. Forking is certainly nol 
precluded in materials showing dissipation [177. 
221,223] ; indeed it has been shown directly that 
[223] for PMMA the sum of the heat generated in 
the two branches after forking is equal to that 
generated at the tip before the forking occurs, as 
one would expect from the energy argument [173] 
It has been noted [205] that the initial crack 
forking angle is greater when forking occurs at 
shorter crack lengths and the suggestion made that 
this implies an influence of processes ahead of the 
crack tip on the forking, and that the influence of 
reflected waves from these on the stability may be 
important [166, 205]. Fig. 6 shows that stress 
waves reflected from the surfaces can certainly 
affect the crack path [166]. Indeed the influence 
of stress waves is the basis for the deductions made 
from the Wallner line [228] patterns and for the 
beautiful techniques using ultra-sonic waves to 
modulate the crack front [182,229].  It is evident 
however that repeated forking may occur before 
interactions with waves reflected from the external 
surfaces become important. Moreover, the advance 
of the locus of the tips of the repeatedly forking 
cracks [167] is approximately at the limiting 
velocity v m (~  1500 m sec -z in glass), so that there 
is no great reduction in crack velocity on forking 
[166, 230]. It is possible [61] that this is because 
the change in velocity necessary to double the 
g(v) factor becomes progressively smaller as the 
crack speed increases and g(v) itself becomes 
smaller. 

In the fracture of toughened glass we ensure 
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Fig. 8. 

that the cracking starts in an"overloaded" solid, 
but with a carefully controlled excess of energy 
available. In other shattering processes, as when we 
use a hammer to crack a nut, this control is lacking. 
The failure of a brittle solid when crushed is often 
a catastrophic shattering because much energy is 
stored in it before fracture begins. This situation 
will be accentuated when the energy is stored very 
rapidly and when the field is inhomogeneous, and 
the site where fracture may start most easily does 
not coincide with the site of maximum stress. 
Once fracture does begin somewhere, of course, 
there will be a rapid redistribution of stress by 
stress waves and a spreading and initiating of 
fracture throughout, as in the repeated forking 
with stress-wave interaction already discussed. 

To study compression failure in a controlled 
way we may deliberately introduce a starting crack 
before the test begins [231-233].  A platen 
applies a force density F/w over a width w to a 
specimen of width d and thickness b normal to the 
paper containing a vertical crack of length a (Fig. 
8). We use simple beam theory to derive the crack 
extension force. Each half of the specimen is 
subject to a couple (F]8)(d -- w) and, with the y 
displacement vtaken to be zero at x = 0 and x = a, 
has an energy a(F/8)2(d--w)2/2EI,  where I =  
bd3/96 (there is also energy due to the uniform 
compression, but this does not depend on a). If 
the crack advances 6a under constant load, then, 
by the general theorem that 6E r~zrr = - - 2 6 E  EL, 
G6a = 8E Er'. Thus 

a - 1 - ( 3 2 )  
2Eb 2 d 
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A force F 8 for splitting is determined by setting 

G = R. If the width w is governed by yielding 
under the platen, the force for yielding is roughly 

F, = Ybw (33) 

where Y is the yield stress. The condition F s = Fy 
determines a critical size of particle below which 
failure will occur by plastic squashing rather than 
by fracture. Thus the well-known intervention of 
plastic behaviour in the comminution of free 
particles [137, 149] is explained [232, 233]. 

Kendall's experiments on polystyrene fit his 
theory well; he uses similar methods to discuss the 
effect of platen size (w < d), crack stability and 
lateral pressure [232]. The analysis is approximate 
and the possible development of sideways forces Q 
(see Section 3) is not considered (the boundary 
conditions keep v = 0 at x = 0, while the crack tip 
- which is not accurately represented by the 
simple beam theory - opens at a finite angle). 
However, it is difficult to see how the theory 
could be improved within the confines of the 
simple beam approximation. For example, allow- 
ance for the development of sideways forces Q (as 
in Section 3) and imposition of an additional 
condition, say, dv/dx = 0 at x = a (also not a 

p r o p e r  representation of a singular crack tip), 
reduces the G of Equation 32 by a factor of four. 
(In contrast to the situation in the semi-infmite 
body considered in Section 3 it does not make G 
zero.) TheR values that follow are then rather low. 
More accurate formulae for G might be obtained 
for specimens with a shape which is easier to 
analyse; for example, some progress could be made 
with cracked circular cylinders [234,235].  

In modern windscreens the extent of the 
toughening is often deliberately reduced in some 
regions to give larger particles and better visibility 
through the windscreen fragments [166]. We 
might hope that the theory of this process would 
shed some light on how we should approach the 
much discussed questions of the size distribution 
and efficiency of the comminution processes, at 
least for single particle crushing, although the 
shattering of toughened glass must become less 
and less relevant as the comminution being studied 
increases in violence. However, as we have tried to 
indicate, these problems are very complicated and 
we shall not attempt at this time to make any 
detailed assessment of the theoretical basis of the 
ideas of Kick [236, 237], Rittinger [238], Bond 
[239-241] ,  Holmes [242], Charles [243, 244], 
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Rose [245] and of the many others who have 
contributed to these important topics, or to add to 
the debate which has raged about them [133, 
139-142] .  

Snow and Paulding [150] who review some 
earlier discussions of the problem, have given a 
theory of the size distribution to be expected 
when an uncracked sphere is crushed between 
opposite point forces, estimating the energy 
density from the known elastic solutions [246-  
249] (there are problems, because the energy in 
regions near the forces is infinite). They find 
however that the observed size distribution is 
better predicted by assuming that the surface area 
So produced by sub-dividing an element is propor- 
tional not to the energy E0 stored in it, but to 
Eo ~/2 . We should not expect an exact proportion- 
ality, of course, because some of the elastic energy 
is going elsewhere. It is interesting that this assump- 
tion also fits approximately the relation found by 
Kerkhof [165] between the number of segments 
of a glass disc fractured by a point load, and the 
stored energy in it. 

A rough estimate of the efficiency of the 
breakage process in which ring and cone cracks 
spread from the opposite poles of a sphere 
between platens [143] has been given [81]. From 
the Hertz theory the work WL required to press 
an (uncracked) particle of radius a against a 
platen to a load P is 

2 (4kt2/3(P'll/a (34) 
\a! 

where k = (9/16)[E2(1 -- v~) + E1 (1 -- v~)]/E 2 
and the suffix 1 refers to the particle (if we 
consider two particles of radiia and b, a is replaced 
by 2ab/(a + b)). We assume [81], guided by the 
observations, that the relation P(a) between the 
load P and the approach ~ of the platen and particle 
is insensitive to the appearance of the cone crack, 
so that Equation 34 is taken to hold during the 
whole process of driving the crack through the 
particle. P is estimated by using the expression of 
Roesler [113] for the G of a conical crack, taking 
the radius of the skirt equal to that of the sphere; 
this gives p2 =REa3/t~(u) where (from theory or 
experiments) K(v) ~ 10 -3 . The energy Us required 
for fracture is at least the area of the cone crack 
time R the fracture energy (it will be greater if the 
sphere breaks into many pieces or if the fragments 
acquire kinetic energy). Taking Us = rra2R/sin % 



where ~ is the semi-angle of the cone, the efficiency 
7 = U~/WL is 0.03 for a = 100/~m and typical 
values of the other parameters for glass [81 ]. It is 
noted that r~ is greatest if the indenter (platen, 
other particle) is rigid. To refine this calculation 
we need to evaluate WL by using formulae appro- 
priate to cracked finite bodies, and also to construct 
a theory which estimates the particle size distri- 
bution of the fragments so that U s can be suitably 
modified. We note also that P has been fixed by 
the quasi-static equilibrium of the cone crack for a 
particular skirt radius (equal to a). Thus the 
questions of the initiation of cracking and of the 
possibility of  overloading because the site of  
maximum stress does not coincide with that where 
fracture can start most easily (the "weaker flaw"), 
are not considered. It is interesting to estimate WL 
independently by using experimental results. For 
glass spheres with 2a = 3.05 x 10 -3 m, P is roughly 
normally distributed [245] with a maximum value 
of 2001bwt = 8 9 4 N ;  this gives WL -- 0.173 J, a 
value much greater than the least energy U s 
a2R = 10 -s J needed for fracture. We can thus see 
how the possibility of  shattering arises and how 
important the detailed analysis of crack initiation 
and propagation with the correct finite body 
geometry is in the discussion of the comminution 
efficiency. 

6. Flint knapping 
In crushing, grinding and in the drilling and 
chipping of brittle materials a component of the 
fracture process is often the removal of a thin 
piece or shaving from the surface. This is also the 
essence of the ancient craft of flint knapping, 
doubtless the oldest example of man's controlled 
use of fracture for his own ends. In pressure 
flaking the piece is removed by a steady pressure 
while in percussion flaking a sharp blow is used. In 
both of these processes the external force is highly 
localized and the crack moves along very near a 
free surface. It is thus greatly influenced by 
repeated reflections of the disturbance it creates. 
Indeed this influence must be a general phenom- 
enon in the fracture of small particles. Another 
example where it might be interesting to examine 
the transmission of energy to the crack tip is the 
function of glass-cutter's light tap in persuading an 
unwilling crack to run along his scratch. Again, 
those interested in making tumblers, dishes, 
candlesticks and other ornaments from old bottles 
may buy a fascinating little apparatus which 
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v ~  ~ -~~ 

Fig. 9. 

enables any careful child to produce controlled 
perfect circumferential fractures as easily as a 
chemist breaks glass tubing. An external circum- 
ferential scratch is first made. This is then tightly 
tapped from inside with a small hammer consisting 
of a circular metal disc with a tapered edge, 
attached to the end of a long rod. The crack 
usually advances in small steps, but sometimes, 
particularly towards the end of the process, in 
larger ones. Over zealous use of  the hammer causes 
deviations. 

Some studies of the fracture mechanics of flint 
knapping [127, 250] and of some wavy conical 
fractures apparently made by ancient man [251, 
252] have been carried out. Here we discuss 
briefly the flaking processes, basing our treatment 
on that of Atkinson et  al. [250] and on an earlier 
review [74]. We use a very idealised geometry to 
make the analysis tractable, but nevertheless are 
able to bring out some interesting points about the 
efficiency of the processes involved. 

We can give an approximate treatment of 
pressure flaking by the same type of argument 
used to discuss the splitting of a single particle 
(Section 4). For simplicity we use anti-plane strain, 
so that (Fig. 9) a force parallel to + z is applied 
upwards from the paper at A. Then if Xo is a 
distance behind the crack tip several times the 
flake thickness b there is a uniform stress Pxz = - o, 

say, in the flake when X < X o ,  and the elastic 
energy density is o2/2/~. By the usual argument, 
when the crack length increases by 6a the elastic 
energy (in unit thickness normal to the paper) 
increases by a2b3a/2/l  while the external force 
does an amount of work 6 V just equal to twice 
this. Thus 

G = a 2 b / 2 # , K  = (2t lG) vz  = 6 b  1/2 (35) 

and the efficiency ~/p = G6a/6 V = ~. To assess the 
dependence of r~p on the velocity let the crack 
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move to the right at a speed v. There is now a 
kinetic energy density T =  �89 where p = la/c 2 
and w(x,  t ) = - - a ( x - - v t ) / l a  is the uniform 
displacement field in the flake well behind the 
crack tip (c is the shear wave velocity). As the 
crack moves 6a =v6 t ,  the energy increases by 
(o2bfa/21a) + (a2v2b6a/21.tc2). In this time the 
external force does work a 2 b6a/#. Thus 

G = (o2b/21a) 1- -  (36) 

and the efficiency is 

rlv = vG/(a2vb/l~) = 1- -  (37) 

It thus decreases with velocity. 
It is easy to confirm the above expressions for 

G by using the energy-momentum tensor, integrat- 
hag round the path S = VWXYZ.  Only YZ makes 
any contribution since that on VWX vanishes 
because it does so if W, X ~ ~ and is independent 
of S. Thus, since px~dSj = 0 on XY,  

a = F x  = s WS~s--P~s dSs 

= W--pzx  (--dy) 
Y Z  -~X 

= a2b/2~z 

For the dynamic case the general formula of 
Equation 21 becomes 

fs {v(w+ T)6~ +p~j;v}dSj vG lim 
S .-+ O 

(38) 
However, this field is a special one in which w (x, t) = 
w(x  -- vt) so that ~ = - -  vOw/~x  ) and G is actually 
independent of  S. Its evaluation gives at once Ex- 
pression 36. 

These results, obtained by approximate ar- 
guments, can be confirmed by exact solutions. For 
the static crack the required harmonic function w 
is Re(~) where z = x l + i x 2 = ~ ' + e  ~ (the anal- 
ogous solution in hydrodynamics is the two- 
dimensional "Borda's mouthpiece", with w corre- 
sponding to the velocity potential ~). This w has 
the form (o/#)(2b/Trr) 1/2 sin �89 0 near the tip, giving 
K = ob v2 in agreement with Equation 35. To 
obtain the dynamic solution we apply the Lorentz 
transformation to w(x,  y )  replacing x by (x - ct)/3 
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and multiplying the result by 3, where/32 = 1 -- 
(v 2/c 2), to maintain the applied load at ab. Near 
the tip the resulting w has the form 

w = L (v)(2~r)- 1/2 (vt  -- x)  ',2 + 0 [(vt -- x) a/2] 

(39) 

where 

L(v)  = (4/#)(1 -- v2/c 2)',4 K(0) 

with K(0) = ob t/2, the static value. The dynamic 
K(v) has the form K(v) = (1 " V2[c2)3/4K(O) and 
G(v) = ~ K (v) L (v), which confirms Equations 36. 

To discuss percussion flaking a pulse 

is applied to the flake, Here H ( X ) =  1 for X > 0 
and H(X) = 0 for X < 0. When the pulse first hits 
the crack at t = 0, the tip is assumed to begin to 
move with constant velocity v. The field may be 
found by the Wiener-Hopf technique, G being 
obtained in terms of a function Q(t), 

G = 2 b # - '  (1 --vZ/c2) - '  [Q(t)l z (41) 

The Laplace transform Q(P) of  Q(t) is an infinite 
product and an explicit expression for G can only 
be found by inverting it. However, the energy E A 
absorbed from the pulse by the crack tip can be 
obtained without this inversion by using Parseval's 
theorem: 

E A = ~ o V G ( t ) d t  

= 2bv/1-1  (1 - V 2 / c Z )  -1  [ e ( t ) ]  z d t  

= 2bvu- l (1  --v2/c2) -1 (27ri)-lf a+i= 
d d -  i ~ 

Ofp)O(-p)dp  

Finally, after some reduction, 

EA = 2b(rr#) -~ (1 + v/c) -1 [iXf(iX)l 2 

exp (-- 6 v2 Xb/c) dX (42) 

Here ~ = ( t--v/c)~(1 + vie). This form is con- 
venient for investigating the effects of different 
shapes of pulse f ( t  -- x/c). A uniform stress pulse 
- -  o of length a in space or a/c in time leads to 

E A = 2ab(v/c)(1 + v/c) -x (o2 h.t)h(a/b51/2) 



The function h (x) tends to x/Tr for small x and to 1 
when x is large while for a long pulse a >> b, h (x) = 1. 
The crack tip interacts with the pulse for a time 
a/(c--v)  and during that time moves a distance 
2 = av/(c -- v). Hence the average energy absorbed 
by the tip per unit advance GAy is obtained by 
setting 

G A v  = EA/~ 
This gives 

a A v  = (2a~b /u ) (1  - v/e)(1 + v/e)-l h(4b~ "~) 
(43) 

The energy E1 injected in the pulse is half potential 
and half kinetic and so is aba2/p, giving an 
efficiency 

V P E R  ~--- EA/EI = 2(v/c)(1 + v/c)-l h(a/b6 x/2) 

(44) 

As v -+ c, ~/PER ~ 1, in contrast to the 7/p given by 
Equation 37 which tends to zero. This difference 
arises because in pressure flaking the velocity at 
the flee end of the flake is proportional to the 
crack speed so that the rate of absorption of 
energy and vG tend to zero together, r/p remaining 
finite. In percussion flaking, however, the velocity 
imparted to the free end of the flake by the blow 
depends only on the mechanical impedance of the 
material and the injected energy is independent of 
the crack speed. The efficiency is thus greatest at 
high crack speeds when the crack absorbs most 
energy. 

The above discussion has treated only very 
simple geometries. It would be interesting to try 
to extend the work to those that are more realistic 
and to attempt a more detailed interpretation 
of some of the phenomena revealed by the high 
speed photography of  shattering and crushing. 

7. Conclusion 
One of the topics we have not so far discussed 
here is the use of additives to facilitate milling, 
grinding or rock-drilling [253, 254]. The ex- 
/Jlanation of their action is bound up with our 
understanding of the general problem of the 
influence of the environment on deformation and 
fracture (the theme of the third Tewksbury lecture 
[255] ), an understanding which is still incomplete, 
despite much study in this field. It is natural to 
study the influence of the environment on the 
classical fracture mechanics parameters. This has 
led to the correlation of crack growth rates with 
stress intensity factors and to the idea of a 

threshold stress intensity factor Kth or Klsee for 
measurable crack advance in the presence of an 
active environment. Recent developments of 
interest have included a re-examination [256-259] 
of the influence of changes in surface energy due 
to adsorption [260-262] .  Some novel ideas have 
also been introduced by Howard [263] in an 
attempt to relate fracture toughness to changes in 
surface energy. Although so far applied only to the 
embrittlement of steels by hydrogen, it seems 
worthwhile to give a brief account of this work, 
since the principles involved should also apply to 
other fractures in an active environment. The 
surface energy changes due to adsorption are, even 
in "brittle" materials, usually much smaller than 
the fracture energy. It has been recognized that 
these small energy changes may nevertheless tip 
the balance of behaviour from ductile to brittle 
[ 1, 28, 31,264] but there has been little quantitat- 
ive development of this idea. The energy release 
rate G A associated with a finite crack advance Aa 
in an elastic-plastic material [33] affords a means 
of relating a fracture energy to a surface energy. 
In the DBCS model [34], the fracture toughness 
is related to G a ,  Aa and the yield stress oy by 

( 1 K~e = 0 . 5 2 @ A a e x p  ( 1 - - v 2 ) @ A a ]  

(45) 
Taking G A to be twice the surface energy and 
estimating the reduction in the latter caused by 
adsorption of hydrogen at pressure p the relation 

_ - 0 . 8 6  GEk T ln (p/po )] 
(Kth/Kie) 2 = exp ~-i---v-~2- ~ l 

(46) 

for the ratio of the threshold toughness Kt~ at 
pressure p to the unembrittled value KIe is ob- 
tained. Here Ps is the saturation adsorption 
parameter in the expression A~, = -- I'sk TIn (P/Po) 
for the reduction in surface energy [261]. The 
relation 46 fits recent data [265] for the em- 
brittlement of steel by gaseous hydrogen very well 
while Equation 45 gives the linear correlation 
between In(Kie/Oy) and 1[@ found when other 
variables are constant [266, 267]. However the 
required G ~ is still too large to be interpreted as 
a surface energy. Accordingly it is further assumed 
[263] that at each increment of crack growth in 
these (intergranular) fractures the crack front is 
presented with an ensemble of deviations de- 
termined by the angles 0 of grain boundaries on 
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which it may proceed. Those boundaries having 0 
smaller than some 0 e will cleave, contributing 
virtually nothing to G a ,  while those with 0 
greater than 0 e will tear, contributing an amount 
Go ~ say. Thus we expect an increasing proportion 
of tearing as the embrittlement proceeds, as is 
observed. To find E(0e) , the expected value of the 
statistical variable 0e, the theory of the emission 
of blunting dislocation loops from a crack tip 
[1] is extended [263]. A crack with a kink [196] 
of angle 0 is examined and the boundary 0 c 
between cleavage and spontaneous emission of a 
dislocation loop is determined. In this way it is 
found that the results on embrittlement by 
gaseous hydrogen [265] require that Aa ~ 10-6m 
and Go ~ ~ 550 J m -2. It is encouraging that these 
values are quite close to those derived from the 
different use of Equation 45 to interpret the 
experiments in which ay is varied [266, 267]. 

We have tried in this paper to discuss some of 
the fundamental questions in the mechanics and 
physics of fracture which may be relevant to its 
use as a tool in breaking or parting materials. On 
the important practical problems we have been 
able to say very little and we look forward to 
learning more about them at this meeting. The 
focus of the symposium on the controlled use of 
fracture to produce desired changes of  shape is 
most timely. There are many fascinating problems 
associated with man's activities in this field, as 
there are in the converse endeavour to ensure the 
integrity of engineering structures. These 
complementary sciences will surely benefit from 
their mutual interaction. Making its contribution 
to this interaction and to the advancement of both 
sciences, the meeting is itself a most fitting tribute 
to the memory of Jack Osborn, whose name will 
be associated always with the Tewksbury Symposia 
he helped so much to establish. 

Acknowledgements 
I wish to thank Drs J. E. Field, E. Sommer and U. 
Solt6sz for providing me with the beautiful high 
speed photographs reproduced in the text. I am 
also greatly indebted to the many experts who 
have sent me letters, reprints, manuscripts and 
advice; to Professors R. H. Brown, N. G. W. Cook, 
K. E. Puttick, H. Rawson, H. E. Rose and K. 
Sch6nert; to Drs B. R. Lawn, A. G. Evans, P. F. 
Messer, R. H. Snow and T. R. Wilshaw; and to 
many others. Needless to say, none of them must 
be blamed for my errors or omissions. Finally my 

552 

best thanks are due to all my colleagues in the 
department and particularly to Professor J. D. 
Eshelby and Dr I. C. Howard, for many stimu- 
lating discussions and for allowing me to make use 
of their unpublished work. 

References 
1. J. R. RICE and R. THOMSON, Phil. Mag. 29 (1974), 

73. 
2. B. R. LAWN and T. R. WlLSHAW, "Fracture of 

Brittle Solids", Cambridge 1975 (Cambridge Univer- 
sity Press, 1975). 

3. C. HSIEH and R. THOMSON, J. Appl. Phys. 44 
(1973), 2051. 

4. V. R. REGEL', A. I. SLUTSKER and l~. E. 
TOMASHEVSKII, Soviet Physics Uspekhi 15 (1972) 
45. 

5. B. A. BILBY, in "Fracture 1977, ICF4", Vol. 4, 
edited by D. M. R. Taplin (University of Waterloo 
Press, Waterloo, Canada, 1977) p. 31. 

6. J. F. KNOTT, in "Fracture 1977, ICF4" Vol. 1, 
edited by D. M. R. Taplin (University of Waterloo 
Press, Waterloo, Canada, 1977) p. 61. 

7. G. A. COOPER and M. R. PIGOTT, in "Fracture 
1977, ICF4", Vol. 1, edited by D. M. R. Taplin 
(University of Waterloo Press, Waterloo, Canada, 
1977) p. 557. 

8. A. G. EVANS, A. H. HEUER and D. L. PORTER, in 
"Fracture 1977 ICF4", Vol. 1, edited by D. M. R. 
Taplin (University of Waterloo Press, Waterloo, 
Canada, 1977) p. 529. 

9. G. R. IRWIN, in "Fracturing of Metals" (ASM, Metals 
Park, Ohio, 1948) p. 147. 

10. E. OROWAN, Rept. Progr. Phys. 12 (1949) 214. 
11. A. A. GRIFFITH, Phil. Trans. Roy. Soc. A221 

(1920) 163. 
12. Idem, Proceedings oftheFirst  International Congress 

on Applied Mechanics, edited by C. B. Biezeno and 
J. M. Burgers (Waltman, Delft, 1924) p. 55. 

13. A. H. COTTRELL, in "Fracture: Proceedings of the 
First Tewksbury Symposium, Melbourne 1963", 
edited by C. J. Osborn (Butterworths, London, 1965) 
p. 1. 

14. D. S. DUGDALE, Jr. Mech. Phys. Solids 8 (1960 100. 
15. A. H. COTTRELL, in: "Symposium on steels for 

reactor pressure circuits, London 1960", Special 
Report No. 69 (The Iron and Steel Institute, London, 
1961) p. 281. 

16. B. A. BILBY, A. H. COTTRELL and K. H. SWINDEN, 
Proc. Roy. Soc. A272 (1963) 304. 

17. B. A. BILBY, A. H. COTTRELL, E. SMITH and 
K. H. SWINDEN,Proc. Roy. Soc. A279 (1964) 1. 

18. B. A. BILBY and K. H. SWINDEN, Proc. Roy. Soc. 
A285 (1965) 22. 

19. P. M. VITVITSKII and M. Y. LEONOV, Vses. Inst. 
Nauchn. Tekhn. Inform. Akad. Nauk SSSR Pt. 1 
(t960) 14. 

20. G. I. BARENBLATT, PriM. Mater. Mech. 23 (1959) 
434,706,893.  

21. B. A. BILBY, Papers presented to the Third Inter- 
national Conference on Fractua'e, Vol. XI (Verein 



Deutscher Eisenhiittenleute, Dtisseldorf, 1973) p. 1. 
22. P. M. VITVITSKII, V. V. PANASYUK and S. Ya. 

YAREMA, Engng Fract. Mech. 7 (1975) 305. 
23. B. A. BILBY and J. D. ESHELBY, in: "Fracture, an 

advanced treatise", Vol. 1, edited by H. Liebowitz 
(Academic Press, New York, 1960) p. 99. 

24. B. A. BILBY, Conference on mechaniscs and physics 
of fracture, Cambridge, January, 1975 (Institute of 
Physics and Metals Society, 1975) pp. i / 1 - 1 / 1 0 .  

25. A. H. COTTRELL, in: "Properties of reactor ma- 
terials and the effects of radiation damage", edited 
by D. J. Littler (Butterworths, London, 1962) p. 5. 

26. A. H. COTTRELL, Proc. Roy. Soc. A285 (1965) 10. 
27. J. R. RICE, in "The mechanics of fracture", Vol. 19, 

edited by F. Erdogan (ASME, New York, 1976) p. 23. 
28. J. R. RICE, Proceedings of the First International 

Conference on Fracture, Vol. 1, edited by T. 
Yokobori et al. (Japanese Society for Strength and 
Fracture of Materials, Tokyo, 1966) p. 309. 

29. K. H. SWINDEN, Ph.D. Thesis, 1964 (University of 
Sheffield);Int. J. Fract. 6 (1970) 445. 

30. T. YOKOBORI and M. ICHIKAWA, Reports of the 
Research Institute for the Strength and Fracture of 
Materials, Tohoku University, Sendal (1966) 2, 21. 

31. J. R. RICE and D. C. DRUCKER, Int. J. Fract. 3 
(1967) 19. 

32. J. R. RICE, in: "Numerical methods in fracture 
mechanics", edited by A. R. Luxmore and J. D. Owen 
(University College, Swansea, 1978) p. 434. 

33. A. P. KFOURI and K. J. MILLER, Proc. Inst. Mech. 
Engrs. 190 (1970) 571. 

34. A. P. KFOURI and J. R. RICE, in: "Fracture 1977, 
ICF4", Vol. 1, edited by D. M. R. Taplin (University 
of Waterloo Press, Waterloo, Canada, 1977) p. 43. 

35. M. P. WNUK, in "Fracture 1977, ICF4", Vol. 3, 
edited by D. M. R. Taplin (University of Waterloo 
Press, Waterloo, Canada, 1977) p. 59. (See also Final 
Progress Report under NSF Grants GH 43605 and 
DMR 74-02316  A02, Part A, South Dakota State 
University, Mech, Engng Dept., March 1977). 

36. R. H. BROWN and H. S. LUONG, Annals o f  the 
CIRP 25 (1976) 1. 

37. E. M. TRENT, "Metal Cutting", (Butterworths, 
London, 1977). 

38. R. KOMANDURI and R. H. BROWN, Metals and 
Materials 6 (1972) 531. 

39. R. H. BROWN and H. S. LUONG, Annals o f  the 
CIRP 23 (1974) 1. 

40. H. C. SORBY, Edinburgh New Phil. J. 60 (1853) 137. 
41. ldem, Phil. Mag. xi (1856) 20. 
42. ldem, ibid. xii (1856) 127. 
43. C. A. BERG,Proceedings of the Fourth U.S. National 

Congress of  Applied Mechanics, Berkeley, Vol. 2, 
edited by R. M. Rosenberg (ASME, 1962) p. 885. 

44. B. A. BILBY, J. D. ESHELBY and A. K. KUNDU, 
Teetonophys. 28'(1975) 265. 

45. B. A. BILBY, J. D. ESHELBY, M. L. KOLBU- 
SZEWKI and A. K. KUNDU, ibid. 35 (1976) 408. 

46. I. C. HOWARD and P. BRIERLEY, lnL J. Eng. ScL 
14 (1976) 1151. 

47. B. A. BILBY and M. L. KOLBUSZEWSKI, Proc. 
Roy. Soc. A355 (1977) 335. 

48. G. R. IRWIN, J. AppL Mech. 24 (1957) 361. 
49. J. FRIEDEL, "Les Dislocations" (Gauthier-Villars, 

Paris, 1956). 
50. J. D. ESHELBY,Phit. Trans. Roy. Soc. A244 (1951) 

87. 
51.Idem, Solid State Phys. 3 (1956) 79. 
52. Idem, in "Inelastic behavior of solids", edited by 

M. F. Kanninen (McGraw Hill, New York, 1970) 
p. 77. 

53.Idem, in "Internal stresses and fatigue in metals", 
edited by R. M. Rassweiler and W. L. Grube (Elsevier, 
Amsterdam, 1959) p. 41. 

54. Idem, in "Prospects of fracture mechanics", edited 
by G. C. Sih et al. (Noordhoff, Leyden, 1975) p. 69. 

55. Idem, J. Elasticity 5 (1975) 321. 
56. B. A. BILBY, Advanced seminar on fracture mech- 

anics, ISPRA 1975 (Commission of the European 
Communities) Paper ASFM/75 No. 6. 

57. J. R. Rice, J. Appl. Mech. 35 (1968) 379. 
58.Idem, in " Fracture, an advanced treatise", Vol. 2, 

edited by H. Liebowitz (Academic Press, New York, 
1968) p. 191. 

59. G. P. CHEREPANOV, Int. J. Solids Structures 4 
(1968) 811. 

60. J. L. SANDERS, J. Appl. Mech. 27 (1960) 352. 
61. J. D. ESHELBY, unpublished work (1978). 
62. G. G. CHELL and P. T. HEALD, Int. J. Fract. 11 

(1975) 349. 
63. J. R. RICE, ibid. 11 (1975) 352. 
64. B. A. BILBY,Progr. SolidMeeh. 1 (1960) 331. 
65.Idem, in "Mechanics of generalised continua", 

IUTAM Symposium Freudenstadt-Stuttgart, edited 
by E. KrSner (Springer, Berlin, 1968) p. 180. 

66. E. KR()NER, "Kontinuumstheorie der Versetzungen 
und Eigenspannungen", (Springer, Berlin, 1958). 

67. B. A. BILBY and J. D. ESHELBY, unpublished work 
(1978). 

68. H. MIYAMOTO and K. KAGEYAMA, in "Numerical 
methods in fracture mechanics", edited by A. R. 
Luxmore and J. D. Owen (University College, 
Swansea, 1978) p. 479. 

69. E. NOETHER, GSttinger Nachrichten (Math. Phys. 
Klasse)(1918) 235. (English translation by M. A. 
Tavel, Transport Theory and Statistical Physics 1 
(1971) 183). 

70. W. G~INTHER,Abh. braunsch, wisch. Ges. 14 (1962) 
54. 

71. B. BUDIANSKY and J. R. RICE, J. Appl. Mech. 40 
(1973) 20. 

72. J. K. KNOWLES and E. STERNBERG, Arch. rat. 
Mech. Anal 44 (1972) 187. 

73. C. ATKINSON and J. D. ESHELBY, Int. J. Fract. 
Mech. 4 (1968) 3. 

74. B. A. BILBY,in "Amorphous Materials", Proceedings 
of the Third International Conference on the Physics 
of Non-crystalline Solids, edited by R. W. Douglas 
and B. Ellis (Wiley, New York, 1972) p. 489. 

75. K. B. BROBERG, Ark. Fys. 18 (1960) 159. 
76. Idem, J. Appl. Mech. 31 (1964) 546. 
77. A. AUSTWICK, Dissertation for M.Sc (Tech.) Uni- 

versity of Sheffield (1968). 
78. J. J. KALKER, Z. angew. Math. Mech. 57 (1977) T3. 

553 



79. F. P. BOWDEN and D. TABOR, "Friction and 
Lubrication", (Methuen, London, 1967). 

80. ldem, "The Friction and Lubrication of Solids", Part 
I, Part II (Clarendon Press, Oxford, 1954, 1964). 

81. B. R. LAWN and T. R. WlLSHAW, J. Mater. ScL 10 
(1975) 1049. 

82. A. G. EVANS and T. R. WILSHAW, Acta Met. 24 
(1976) 939. 

83. A. G. EVANS, J. C. CHESNUTT and H. NADLER, 
ibid. 24 (1976) 867. 

84. S. M. WIEDERHORN and B. R. LAWN, Jr. Amer. 
Ceram. Soc. 60 (1977) 451. 

85. A. G. EVANS, M. E. GULDEN and M. ROSEN- 
BLATT,Proe. Roy. Soc. Lond. A361 (1978) 343. 

86. M. M. CHAUDHRI and S. M. WALLEY, Phil. Mag. 
37 (1978) 153. 

87. A. G. EVANS and T. R. WILSHAW, J. Mater. ScL 12 
(1977) 97. 

88. H. P. KIRCHNER and R. M. GRUVER, Mater. ScL 
Eng. 12 (1977) 1573. 

89. B. R. LAWN, E. R. FULLER and S. M. WlEDER- 
HORN, J. Amer. Ceram. Soc. 58 (1976) 193. 

90. B. R. LAWN and M. V. SWAIN, J. Mater. SeL 10 
(1975) 113. 

91. B. J. HOCKEY and B. R. LAWN ibid 10 (1975) 
1275. 

92. B. R. LAWN, S. M. WlEDERHORN and H. H. 
JOHNSON, J. Amer. Ceram. Soc. 58 (1975) 428. 

93. M. V. SWAIN and J. T. HAGAN, J. Phys. D. AppL 
Phys. 9 (1976) 2201. 

94. C. J. STUDMAN and J. E. FIELD, 3". Mater. ScL 
12 (1977) 215. 

95. M. V. SWAIN, J. Mater. Sci. 11, (1976) 2345. 
96. M. V. SWAIN and B. R. LAWN, Int. J. RockMech. 

Min. Sci and Geomech. Abstr. 13 (1976) 311. 
97. B. R. LAWN and A. G. EVANS, J. Mater. ScL 12 

(1977) 2195. 
98. D. M. MARSH, Proc. Roy. Soc. A279 (1964) 420; 

A282 (1964) 33. 
99. B. R. LAWN, M. V. SWAIN and K. PHILLIPS, J. 

Mater. ScL 10 (1975) 1236. 
100. K. E. PUTTICK, L. S. A. SMITH and L. E. MILLER, 

J. Phys. D: AppL Phys. 10 (1977) 48. 
101. K. E. PUTTICK, J. Phys. D: Appl. Phys. 11 (1978) 

595. 
102. A. BROESE VAN GROENOU, N. MAAN and 

J. D. B. VELDKAMP, Philips Res. Repts. 30 (1975) 
320. 

103. J. D. B. VELDKAMP and R. J. KLEIN WASSINK, 
ibid. 31 (1976) 153. 

104. M. C. SHAW, Mech. Chem. Eng. Trans., lnst. Eng. 
Australia MC8 (1972) 73. 

105. M. C. SHAW, in "New developments in grinding", 
(Carnegie Press, Pittsburgh, 1972) p. 220. 

106. G. PAHLITZSCH, ibid. p. 771. 
107. HEINRICH HERTZ, Miscellaneous Papers, Author- 

ized English Translation by D. E. Jones and G. A. 
Schott (Macmillan, London, 1896) Ch. 5, 6. 

108. S. FUCHS, Phys. Z. 14 (1913) 1282. 
109. W. B. MORTON and L. J. CLOSE, Phil. Mag. 43 

(1922) 320. 
110. K. L. JOHNSON, J. J. O'CONNOR and A. C. 

554 

WOODWARD, Proc. Roy. Soc. A334 (1973) 95. 
111. F. AUERBACH,Ann. Phys. Chem. 43 (1891) 61. 
112. F. C. ROESLER, Proc. Phys. Soe. B69 (1956) 55. 
ll3. Idem, ibid. B69 (1956) 981. 
114. J. P. A. TILLETT,ibid. B69 (1956) 47.  
115. F. C. FRANK and B. R. LAWN, Proc. Roy. Soe. 

A299 (1967) 291. 
116. I. L. OH and I. FINNIE, o r. Mech. Phys. Solids 15 

(1967) 401. 
117. Y. M. TSAI and H. KOLSKY, ibid. 15 (1967) 29. 
118. G. M. C. FISHER, J. AppL Phys. 38 (1967) 1781. 
119. D. R. GILROY and W. HIRST, J. Phys. D: AppL 

Phys. 2 (1969) 1784. 
120. B. HAMILTON and H. RAWSON, J. Appl. Phys. 41 

(1970) 2738. 
121. Idem, J. Mech. Phys. Solids 18 (1970) 127. 
122. F. B. LANGITAN and B. R. LAWN, J. AppL Phys. 

40 (1969) 4009. 
123. B. D. POWELL and D. TABOR, J. Phys. D: AppL 

Phys. 3 (1970) 783. 
124. T. R. WILSHAW, ibid. 4 (1971) 1567. 
125. F. F. LANGE, lnt. J. Fract. 12 (1976)409. 
126. J. HARRISON and J. WlLKS, J. Phys. D: AppL Phys. 

11 (1978) 73. 
127. F. KERKHOF and H. M(JLLER-BECK, Glastech. 

Ber. 42 (1969) 439. 
128. I. FINNIE and S. VAIDYANATHAN, in Proceedings 

of the Conference on Fracture Mechanics of Ceramics, 
Vol. 1 edited by R. C. Bradt et al. (Plenum Press, 
New York, 1974) 231. 

129. L. B. FREUND, Int. J. Solids Structures 14 (1978) 
241. 

130. G. I. BARENBLATT and G. P. CHEREPANOV, 
AppL Math. Mech. (PMM) 25 (1961) 1654. 

131. G. P CHEREPANOV, Mekhanika Khrupkogo 
Razrusheniya, Nauka, Moscow (1974) p. 571. 

132. F. OUCHTERLONY, J. Elasticity 8 (1978) 259. 
133. V. C. MARSHALL (editor), Comminution: A report 

by the Institution of Chemical Engineers' Working 
Party concerned with the size reduction of solid 
materials (Institution of Chemical Engineers, London, 
1974). 

134. H. P. GOTTBERG, Deehema Monographien 69]1 
(1972) 193. 

135. K. SCHt3NERT, ibid. 79A/1 (1976) 67. 
136. H. RUMPF and K. SCH(~NERT, ill "Harold Heywood 

symposium", Loughborough University of Tech- 
nology, 1973, Paper 2. 

137. K. SCH(3NERT, AIME Centennial Annual Meeting 
(1971) Preprint 71-B-115. 

138. K. SCHONERT and K. STEIER, Chem. Ing. Tech. 
13 (1971) 773. 

139. C. J. STAIRMAND. Dechema Monographien 79A/1 
(1976) 1. 

140. G. C. LOWRISON, "Crushing and Grinding" 
(Butterworths, London, 1974). 

141. B. BEKE, "Principles of Comminution" (Hungarian 
Academy of Sciences, Budapest, 1964). 

142. K. REM]~NYI, "Theory of grindability and the 
comminution of binary mixtures" (Hungarian 
Academy of Sciences, Budapest, 1974). 

143. H. RUMPF and K. SCHONERT, Dechema Mono- 



graphien 69/1 (1972) 51. 
144. P. HABIB, D. RADENKOVIC and J. SALEN~ON, 

Dechema Monographien 57/1 (1967) 127. 
145. H. H. GILDERMEISTER and K. SCHONERT, ibid. 

69/1 (1972) 233. 
146. M. STIESS and K. SCH(3NERT, Colloid and Polymer 

ScL 252 (1974) 743. 
147. H. RUMPF, F. FAULHABER, K. SCH(~NERT and 

H. UMHAUER, Dechema Monographien 57 (1967) 
85. 

148. H. -H. GILDEMEISTER and K. SCH(~NERT, ibid. 
79 (1976) 131. 

149. K. STEIER and K. SCHONERT, ibid. 69/1 (1972) 
167. 

150. R. H. SNOW and B. W. PAULDING, in "Harold 
Heywood Memorial Symposium", Loughborough 
University of Technology (1973) Paper 3. 

151. K. SCH(~NERT, in "Harold Heywood Memorial 
Symposium", Loughborough University of Tech- 
nology (1973) Paper 6. 

152. N. ARBITER, C. C. HARRIS and G. A. STAM- 
BOLTZIS, Trans. Soc. Mining Eng. AIME 244 (1969) 
118. 

153. J. W. AXELSON and E. L. PIRET, Incl. Eng. Chem. 
42 (1950) 665. 

154. B. H. BERGSTROM, C. L. SOLLENBERGER and 
W. MITCHELL, Trans. AIME 220 (1961) 367; 220 
(1961) 384. 

155. A. SMEKAL, Zeit. VDI, Beiheft Verfahrenstechnik 6 
(1938) 159. 

156.Idem, ibid. 81 (1937) 1321. 
157. L. OBERT, in "Fracture, an advanced treatise, 

Vol. 7", edited by H. Liebowitz (Academic Press, 
New York, 1972) p. 93. 

158. B. R. LAWN and D. B. MARSHALL, Phys. Chem. 
Glasses 18 (1977) 7. 

159. J. M. BARSOM, J. Amer. Ceram. Soc. 51 (1968) 75. 
160. F. KERKHOF and H. RICHTER, Proceedings of the 

Second International Conference on Fracture, 
Brighton (Chapman and Hall, London, 1969) Paper 
40. 

161. J. T. HAGAN, M. V. SWAIN and J. E. FIELD,Phys. 
Chem. Glasses 18 (1977) 101. 

162. A. CHAKRAVARTI  and A. JOWETT, Dechema 
Monographien 57/2 (1967) 583. 

163. W. C. MAURER, in "Failure and breakage of rock, 
eighth symposium on rock mechanics", New York 
(1967) edited by C. Fairhurst (AIME, Petroleum 
Engineers, Port City Press, Baltimore, 1967) p. 355. 

164. N. G. W. COOK and V. R. HARVEY, in "Inter- 
national Society For Rock Mechanics, 3rd Congress 
Proc. Pap. Denver, Colo, 1974 (Available from NAS 
Washington, DC, 1974) Vol. I, Part B, p. 1599. 

165. F. KERKHOF, Glasteeh. Ber. 48 (1975) 112. 
166. J. E. FIELD, Contemp. Phys. 12 (1971) 1. 
167. H. SCHARDIN, in "Fracture, International Seminar 

on Atomic Mechanisms of Fracture, Swampscott", 
edited by B. L. Averbach et aL, (Wiley, New York, 
1959) p. 297. 

168. A. B. J. CLARK and G. R. IRWIN, Exp. Mech. 6 
(1966) 321. 

169. J. M. KRAFFT and G. R. IRWIN, in "Symposium 

on Fracture Toughness Testing and its Applications, 
Philadelphia 1965, STP 381, (ASTM, Metals Park, 
Ohio, 1965) p. 114. 

170. J. CONGELTON and N. J. PETCH, Phil. Mag. 16 
(1967) 749. 

171. ldem, Int. J. Fract. Mech. 1 (1965) 14. 
172. Idem, Acta Met. 14 (1966) 1179. 
173. J. W. JOHNSON and D. G. HOLLOWAY, Phil. Mag. 

14 (1966) 731. 
i74.1dem, ibid. 17 (1968) 899. 
175. R. W. RICE, in "Surfaces and interfaces in glass and 

ceramics", edited by V. D. Fr~chette et al. (Plenum, 
New York, 1974) p. 439. 

176. J. J. MECHOLSKY, R. W. RICE and S. W. FREIMAN, 
J. Amer. Ceram. Soc. 57 (1974) 440. 

177. A. S. KOBAYASHI, B. G. WADE, W. B. BRADLEY 
and S. T. CHIN, Eng. Fract. Mech. 6 (1974) 81. 

178. A. S. KOBAYASHI, S. MALL and W. B. BRADLEY, 
ONR Contract No. N00014-67-A0103-0040, Tech- 
nical Report No. 22 (1975). 

179. F. P. BOWDEN, J. H. BRUNTON, J. E. FIELD and 
A. D. HEVES, Nature 216 (1967) 38. 

180. J. CONGLETON, in: "Dynamic Crack Propagation", 
edited by G. C. Sih (Noordhoff, Leyden, 1973) 
p. 427. 

181. J. G. BLAUEL and F. KERKHOF, Chem. Ins. Teeh. 
43 (1971) 746. 

182. F. KERKHOF, in "Dynamic crack propagation", 
edited by G. C. Sih (Noordhoff, Leyden, 1973) p. 1. 

183. E. SOMMER, Eng. Fract. Mech. 1 (1969) 539. 
184. A. SMEKAL, Osterr. Ing. -Arch. 7 (1953) 49 (see 

Glastechn. Ber. 27 (1954) 398). 
185. G. K. BANSAL,Ph//. Mag. 35 (1977) 935. 
186. J. W. DALLY and T. KOBAYASHI, Int. J. Solids 

Structures 14 (1978) 121. 
187. T. KOBAYASHI and J. W. DALLY, ASTM STP 627 

ASTM Philadelphia, 1977, p. 257. 
188. H. KOLSKY and D. RADER, in "Fracture, an 

advanced treatise", Vol. I, edited by H. Liebowitz 
(Academic Press, New York, 1968) p. 533. 

189. H. KOLSKY, in "Dynamic crack propagation", 
edited by G. C. Sih (Noordhoff, Leyden, 1973) 
p. 399. 

190. E. SOMMER and U. SOLTt~SZ, private communi- 
cation. 

191. J. CARLSSON, in "Prospects of fracture mechanics", 
edited by G. C. Sih et al. (Noordhoff, Leyden, 1975) 
p. t39. 

192. D. BERGEZ, Revue de Phys. Appliqu~e 9 (1974) 
599. 

193. J. KALTHOFF, Paperspresented to the Third Inter- 
national Conference on Fracture, Munich (1973) 
Vol. X, p. 325. 

194. J. KALTHOFF, in "Dynamic crack propagation", 
edited by G. C. Sih (Noordhoff, Leyden, 1973) 
p. 449. 

195. R. V. GOL'DSTEIN and R. L. SALGANIK, Int. J. 
Fract. 10 (1974) 507. 

196. B. A. BILBY and G. E. CARDEW, ibid. 11 (1975) 
708. 

197. B. A. BILBY, G. E. CARDEW and I. C. HOWARD, 
in "Fracture 1977, ICF4", Vol. 3, edited by D. M. R. 

555 



Taplin (University of Waterloo Press, Waterloo, 
Canada, 1977) p. 197. 

198. H. BERGKVIST and L. GUEX, in "Numerical 
methods in fracture mechanics", edited by A. R. 
Luxmore and J. D. Owen (University College, 
Swansea, 1978) p. 810. 

199. A. R. INGRAFFEA, ibid. p. 235. 
200. I. C. HOWARD and P. E. G. CORLETT, unpublished 

work (1977). 
201. P. E. G. CORLETT, M.Sc. (Tech.) Dissertation, 

University of Sheffield (1977). 
202. J. J. BENBOW and F. C. ROESLER, Proc. Phys. 

Soc. B70 (1957) 201. 
203. B. COTTERELL,lnt. J. Fraet. Mech. 1 (1965) 96. 
204.Idem, ibid. 2 (1966) 526. 
205. L. R. F. ROSE,Int. J. Fract. 12 (1976) 799. 
206. Idem, ibid. 12 (1976) 829. 
207.1dem, Proc. Roy. Soc. A349 (1976) 497. 
208.Idem, J. Elasticity 7 (1977) 219. 
209. B. V. KOSTROV,Prikl. Mat. Mekh. 30 (1966) 1042. 
210. J. D. ESHELBY, J. Mech. Phys. Solids 17 (1969) 

177. 
211. Idem, in "Physics of strength and plasticity", edited 

by A. S. Argon (M.I.T. Press, Cambridge, MA, 1969). 
212. L. B. FREUND,J. Mech. Phys. Solids 20 (1972) 129. 
213.Idem, 20 (1972) 141. 
214.Idem, 21 (1973) 47. 
215.Idem, in "The mechanics of fracture", Vol. 19, 

edited by F. Erdogan (ASME, New York, 1976) 
p. 105. 

216. J. D. ESHELBY, Science Progress 59 (1971) 161. 
217. H. KiJPPERS, lnt. J. Fract. Mech. 3 (1967) 13. 
218. A. A. WELLS, Welding Res. 7 (1953) 345. 
219. G. MANITZ, Dissertation, Albert Ludwigs Uni- 

versit~it, Freiburg i. Br. (1959). 
220. K. SCH(3NERT and R. WEICHERT, Chem. lng. 

Techn. 41 (1969) 295. 
221.W. D~)LL, Eng. Fract. Mech. 5 (1973) 259. 
222. T. L. PAXON and R. A. LUCAS, in "Dynamic crack 

propagation", edited by G. C. Sill (Noordhoff, 
Leyden, 1973) p. 415. 

223. K.N.G. FULLER, P. G. FOX and J. E. FIELD,Proc. 
Roy. Soc. A341 (1975) 537. 

224. R. WEICHERT, Dissertation, University of Karlsruhe 
(1976). 

225. H. BERGKVIST, Or. Mech. Phys. Solids 21 (1973) 
229. 

226. W. DOLL,Int. J. Fract. 11 (1975) 184. 
227.Idem, ibid. 12 (1976) 595. 
228. H. WALLNER, Z. Phys. 114 (1939) 368. 
229. F. KERKHOF, Naturwiss. 40 (1953) 478. 
230. P. ACLOQUE in "Sympose sur la r6sistance m6ch- 

anique du verre", Florence 1961, Charleroi 1962 
(Union Scient. Cont. du Verre) p. 851. 

231. K. KENDALL,J. Mater. Sci. 11 (1976) 1267. 
232. Idem, Proc. Roy. Soc. A361 (1978) 245. 
233. Idem, Nature 272 (1978) 710. 
234. S. Ya YEREMA, Fiziko-Kimicheskaya Mekh. Mater. 

12 (1976) 25. 
235. R. D. GREGORY, Math. Proc. Camb. Phil. Soc. 81 

(1977) 497. 
236. F. KICK, DingersJ. 250 (1883) 141. 
237. ldem, "Das Gesetz der proportionale Widerst~inde", 

(Felix, Leipzig, 1885). 

556  

238. P. R. VON RITTINGER, "Lehrbuch der Aufbreit- 
ungskunde", (Ernst und Korn, Berlin, 1867). 

239. F. C. BOND, Chem. Eng. 69 (1962) 103. 
240. Idem, Trans. AIME, Mining Eng. 193 (1952) 484. 
241. F. C. BOND and JEN-TUNG WANG, ibid. 187 

(1950) 871. 
242. J. A. HOLMES, Trans, Inst. Chem. Eng. 35 (1957) 

125. 
243. R. J. CHARLES, MiningEng. 9 (1957) 80. 
244.Idem, ibid. 8 (1956) 1028. 
245. H. E. ROSE, Dechema Monographien 57/1 (1966) 

27. 
246. E. STERNBERG and F. ROSENTHAL, J. Appl. 

Mech. 33 (1952) 413. 
247. J. SALEN~ON,Int. J. Rock Mech. Min. ScL 3 (1966) 

349. 
248. Y. HIRAMATSU and Y. OKA, ibid. 3 (1966) 89. 
249. V. I. BLOKH, "Teoriya Uprugosti", (University 

Press, Kharkov, 1964) p. 460. 
250. J. G. FONSECA, J. D. ESHELBY and C. ATKINSON, 

lnt. J. Fract. Mech. 7 (1971) 421. 
251. D. BAHAT, J. Amer. Ceram. Soc. 60 (1977) 118. 
252.1dem, J. Mater. ScL 12 (1977) 620. 
253. P. A. REBINDER, L. A. SCHREINER and K. F. 

ZHIGACH, "Hardness reducers in drilling", (Acad- 
emy of Sciences of theUSSR, Moscow, 1944) English 
translation (Council for Scientific and Industrial 
Research, Melbourne, 1948). 

254. P. SOMASUNDARAN and I. J. LIN, Ind. Eng. 
Chem. Process. Des. Develop. 11 (1972) 321. 

255. A. R. C. WESTWOOD, in "Effects of chemical 
environment on fracture processes, the Third 
Tewksbury Symposium on Fracture", edited by C. J. 
Osborn and R. C. Gifkins (University of Melbourne, 
Melbourne, 1974)(see also J. Mater. ScL 9 (1974) 
1871). 

256. J. R. RICE, in "Effect of hydrogen on the behaviour 
of materials, Jackson Lake Conference", 1976, 
edited by A. W. Thompson and I. M. Bernstein 
(Metallurgical Society of AIME, 1976) p. 455. 

257. R. B. HEADY, Corrosion, NACE 33 (1977) 441. 
258. J. R. RICE, Report No. MRL E-106, Division of 

Engineering, Brown University (1977). 
259. R. THOMSON,J. Mater. Sci. 13 (1978) 128. 
260. N. J. PETCH and P. STABLES, Nature 169 (1952) 

842. 
261. N. J. PETCH,Phil. Mag. 1 (1956) 331. 
262. P. A. REBINDER and N. A. KALINOVSKAYA, 

Zhur. Tekh. Fiz. 2 (1932) 726. 
263. I. C. HOWARD, Proceedings of the 3rd International 

Conference on Mechanical Behaviour of Materials, 
Vol. 2, edited by K. J. Miller and R. F. Smith 
(Pergamon, Oxford, 1979) p. 463, 

264. A. KELLY, W. TYSON and A. H. COTTRELL, Phil. 
Mag. 15 (1967) 567. 

265. R. A. ORIANI and P. H. JOSEPHIC, Acta Met. 25 
(1977) 979. 

266. W. W. GERBERICH and Y. T. CHEN, MeL Trans. 
6A (1975) 271. 

267 .W.W.  GERBERICH and J. F. LESSAR, ibid. 7A 
(1976) 953. 

268. K. K. LO,J. Appl. Mech. 45 (1978) 797. 

Received 6 June and accepted 11 June 1979. 


